Vitamin C

Aus Vita Sana
Wechseln zu: Navigation, Suche

Die L-(+)-Ascorbinsäure und ihre Ableitungen (Derivate) mit gleicher Wirkung werden unter der Bezeichnung Vitamin C zusammengefasst.[1] Der Sammelbegriff Vitamin C umfasst daher auch Stoffe, die im Körper zu L-(+)-Ascorbinsäure umgesetzt werden können, wie zum Beispiel die Dehydroascorbinsäure (DHA).[2]

Ascorbinsäure ist ein farb- und geruchloser, kristalliner, gut wasserlöslicher Feststoff mit saurem Geschmack. Sie ist eine organische Säure, genauer eine vinyloge Carbonsäure; ihre Salze heißen Ascorbate. Ascorbinsäure gibt es in vier verschiedenen stereoisomeren Formen, biologische Aktivität weist jedoch nur die L-(+)-Ascorbinsäure auf. Eine wichtige Eigenschaft ist beim Menschen und einigen anderen Spezies die physiologische Wirkung als Vitamin. Ein Mangel kann sich bei Menschen durch Skorbut manifestieren. Der Name ist daher abgeleitet von der lateinischen Bezeichnung der Krankheit, scorbutus, mit der verneinenden Vorsilbe a- (weg-, un-), also die ‚antiskorbutische‘ Säure. Da Ascorbinsäure leicht oxidierbar ist, wirkt sie als Redukton und wird als Antioxidans eingesetzt.[2]

Vorkommen

In der Nahrung kommt Vitamin C vor allem in Obst und Gemüse vor, sein Gehalt sinkt jedoch beim Kochen, Trocknen oder Einweichen sowie bei der Lagerhaltung. Zitrusfrüchte wie Orangen, Zitronen und Grapefruits enthalten – in reifem Zustand unmittelbar nach der Ernte – viel Vitamin C. Grünkohl hat den höchsten Vitamin-C-Gehalt aller Kohlarten (105–120 mg/100 g verzehrbare Substanz). Rotkraut, Weißkraut und Sauerkraut sind ebenfalls Vitamin-C-Lieferanten. Sauerkraut war lange Zeit in der Seefahrt von Bedeutung, wo ein haltbares Vitamin-C-reiches Nahrungsmittel benötigt wurde. Die höchsten natürlichen Vitamin-C-Konzentrationen wurden in der Buschpflaume und im Camu-Camu gefunden. In Sauerkraut und Kohlgemüse ist Ascorbinsäure in Form von Ascorbigen A und B (C-2-Scatyl-L-ascorbinsäure) gebunden.[3] Wird das Gemüse gekocht, zerfallen die Moleküle in L-Ascorbinsäure und 3-Hydroxyindol, sodass es in gekochtem Zustand mehr Vitamin C enthalten kann als im rohen Zustand. Durch zu langes Kochen wird das Vitamin jedoch zerstört und gelangt verstärkt in das Kochwasser. Viele Gemüsearten enthalten Ascorbinsäure-Oxidase, die insbesondere durch Zerkleinern mit dem Vitamin in Berührung kommt und dieses oxidiert. Das führt zum Beispiel bei Rohkost, die nicht sofort verzehrt wird, zu erheblichen Vitamin-C-Verlusten.[2]

Die folgenden Angaben dienen nur der Orientierung, die tatsächlichen Werte hängen stark von der Sorte der Pflanze, der Bodenbeschaffenheit, dem Klima während des Wachstums, der Lagerdauer nach der Ernte, den Lagerbedingungen und der Zubereitung ab.

Vitamin-C-Gehalt in Obst- und Gemüsesorten je 100 g (nach absteigendem Vitamin-C-Gehalt geordnet):[2]

Vitamin-C-Gehalt in tierischen Produkten je 100 g (nach absteigendem Vitamin-C-Gehalt geordnet):

Dehydroascorbinsäure

L-Dehydroascorbinsäure (englisch dehydro ascorbic acid, DHA) entsteht durch Oxidation von Ascorbinsäure. Im menschlichen Metabolismus kann sie zu L-Ascorbinsäure reduziert werden und damit Vitamin C regenerieren. Dehydroascorbinsäure liegt in wässrigen Lösungen nahezu vollständig als Monohydrat (mono-DHA·H2O) vor. Dabei bildet es einen Bizyklus, was durch Kernspinresonanzspektroskopie nachgewiesen wurde. Möglicherweise kann es noch ein zweites Molekül Wasser aufnehmen, um dann ein Dihydrat auszubilden.[7] Auch Semi-Dehydroascorbinsäure sowie oxidierte Formen veresterter Ascorbinsäuren werden zur Gruppe der Dehydroascorbinsäure gezählt.[2]

Generell wird Vitamin C in Form von DHA durch Glucosetransporter, hauptsächlich GLUT-1, in die Mitochondrien der Zellen transportiert, da nur sehr wenige Zellen über spezifische Vitamin-C-Transporter verfügen.[8] Hierbei sind die meisten dieser Transporter Natriumionen-abhängig. Insbesondere das Gehirn ist auf eine Versorgung mit Ascorbinsäure angewiesen, das Vitamin kann jedoch nicht die Blut-Hirn-Schranke passieren.[9] Dieses Problem wird dadurch umgangen, dass Dehydroascorbinsäure durch Glucosetransporter, zum Beispiel GLUT1, durch die Schranke transportiert und in den Gehirnzellen zu Ascorbinsäure reduziert wird.[2]

Es wird davon ausgegangen, dass Ascorbinsäure in Form von DHA intrazellulär transportiert wird. Hierbei soll extrazelluläre Ascorbinsäure zu DHA oxidiert, in die Zelle aufgenommen und dann wieder reduziert werden, da Ascorbinsäure selbst die Zelle nicht verlassen kann.[10] DHA ist instabiler als L-Ascorbinsäure. Je nach Reaktionsbedingungen (pH-Wert, An- beziehungsweise Abwesenheit von Reduktionsmitteln wie Glutathion) kann es entweder wieder zurück in Ascorbinsäure umgewandelt werden oder zu Diketogulonsäure (DKG) irreversibel hydrolysieren.[11][12] [2]

Physiologische Bedeutung

Vitamin C ist ein Radikalfänger und hat eine antioxidative Wirkung (es wirkt also als Reduktionsmittel).[2]

Weiterhin stellt Vitamin C ein wichtiges Coenzym für die Prolyl-4-Hydroxylase dar. Dieses Enzym wird bei der Biosynthese des Proteins (Eiweißes) Kollagen benötigt. Es wandelt integrierte Prolinreste in 4-Hydroxyprolyl-Seitenketten unter Verbrauch von molekularem Sauerstoff um. Hydroxyprolin ist für den stabilen Kollagenaufbau unerlässlich.

Ebenfalls innerhalb der Biosynthese von Kollagen, aber auch weiterer Proteine, findet mithilfe von Ascorbinsäure und des Enzyms Lysylhydroxylase die Hydroxylierung von L-Lysin zum Hydroxylysin statt. Im Kollagen erfüllt dieses eine Funktion in der kovalenten Quervernetzung benachbarter Moleküle. Darüber hinaus kann Hydroxylysin im Kollagen und weiteren Proteinen glykosyliert werden, was zur Bildung von Glykoproteinen führt.

Mangel an Vitamin C führt zu einer verminderten Aktivität der Prolyl-Hydroxylierung und der Lysyl-Hydroxylierung und damit zur Instabilität von Kollagen. Da Kollagen in praktisch allen Organen und Geweben des menschlichen und tierischen Organismus vorkommt, vor allem im Bindegewebe, wird bei Mangel von Vitamin C Skorbut ausgelöst.

Bei der Hydroxylierung von Steroiden ist Vitamin C ein wichtiger Cofaktor. Darüber hinaus spielt es eine wichtige Rolle beim Aufbau von Aminosäuren wie beispielsweise dem L-Tyrosin. Auch bei der Umwandlung von Dopamin zu Noradrenalin, im Cholesterin-Stoffwechsel (Ascorbinsäure spielt eine Rolle bei der Umwandlung von Cholesterol zu Gallensäure und senkt dadurch den Blut-Cholesterol-Gehalt),[13] der Serotoninsynthese und bei der Carnitinbiosynthese wird Ascorbinsäure benötigt.[2]

Mit Niacin und Vitamin B6 steuert Vitamin C die Produktion von L-Carnitin, das für die Fettverbrennung in der Muskulatur benötigt wird. Weiterhin begünstigt es die Eisenresorption im Dünndarm.

Aufgrund der hohen Konzentration von Vitamin C im männlichen Sperma wird der Einfluss auf die Zeugungsfähigkeit derzeit untersucht. Vitamin-C-Gaben bei manchen unfruchtbaren Männern konnten vereinzelt die Spermienqualität erhöhen.[13]

Die Stimulation der körpereigenen Abwehr, die dem Vitamin C oft zugeschrieben wird, wird unter anderem durch einen Schutz der Phagozytenmembran vor oxidativer Selbstzerstörung erklärt.[14][15][16] Diese oxidative Selbstzerstörung kann sonst durch das bei der Phagozytose ausgelöste Halogenid-Peroxidase-System ausgelöst werden. Zudem wurde in Tierversuchen eine erhöhte Interferonproduktion sowie eine Aktivierung des Komplementsystems nach Gabe von Vitamin C beobachtet werden.[14] Generell wurde bei Leukozyten im Blut, die einen wichtigen Stellenwert in der Immunabwehr einnehmen, ein hoher Ascorbinsäuregehalt festgestellt.[17] Weiterhin scheint Vitamin C Einfluss auf zahlreiche weitere neutrophile Funktionen zu haben, wie die Chemotaxis, Aufnahme von Partikeln durch Phagozyten, Lysozym-beeinflusste nicht-oxidative Immunreaktion und die Stimulation des Hexose-Monophosphat-Shunts.[18][2]

Der Stellenwert von Vitamin-C-Gaben zur Bekämpfung und Vorbeugung von Krankheiten wie dem grippalen Infekt ist wissenschaftlich allerdings umstritten,[19][13] wobei größere Reviews einen generellen Trend sehen, dass während Vitamin C zwar keinen messbaren prophylaktischen Effekt bei saisonalem grippalen Infekt hat, allerdings ein moderater positiver Effekt auf den Krankheitsverlauf beobachtet wurde. Dieser konnte in therapeutischen Studien allerdings nicht reproduziert werden.[20][21] Es gibt auch Meta-Analysen, die zeigen, dass Nahrungsergänzungsmittel mit Vitamin C bei grippalen Infekten weder prophylaktisch helfen noch die Genesung beschleunigen können.[22] [2]

L-Ascorbinsäure wirkt am Nicotinrezeptor des Typs α9α10 als positiver allosterischer Modulator. Hierdurch könnte es sich zur Akutbehandlung eines Schalltraumas empfehlen. Die wirksame Konzentration liegt bei 1–30 mM.[23]

Bedarf

Der Bedarf an Vitamin C wird zum Teil sehr kontrovers gesehen. Die Zufuhrempfehlung für einen gesunden Erwachsenen beträgt laut Empfehlung der Deutschen Gesellschaft für Ernährung 100 mg/Tag.[24] Die Meinungen hierüber gehen jedoch weit auseinander; die Empfehlungen anderer Gruppierungen liegen zwischen einem Bruchteil (zum Beispiel der Hälfte) und einem Vielfachen (zum Beispiel „so viel wie möglich“) dieses Wertes. Fest steht, dass Mengen bis zu 5000 mg kurzzeitig als unbedenklich gelten. Überschüssige Mengen werden vom Körper über den Urin ausgeschieden, da Vitamin C gut wasserlöslich ist (siehe auch Hypervitaminosen).[2]

Bei einer ausgewogenen Mischkost kann in Deutschland davon ausgegangen werden, dass dem Körper alle lebensnotwendigen Vitamine, und daher auch Vitamin C, in ausreichendem Maße zugeführt werden. Die Versorgung mit Vitamin C ist in Deutschland knapp über der DGE-Empfehlung von 100 mg pro Tag. Daher sind Vitaminpräparate für einen gesunden Menschen, der sich abwechslungsreich und vollwertig ernährt, überflüssig. Die Empfehlung für Schwangere und Stillende liegt bei 110 beziehungsweise 150 mg täglich. Ursache für eine unzureichende Zufuhr ist meistens eine einseitige Ernährung. Dies betrifft vor allem Menschen, die nicht täglich frisches Obst und Gemüse verzehren.[2]

Untersuchungen mit 14C-markiertem Vitamin C zeigen, dass der tägliche Ascorbatumsatz unabhängig von der Vitamin-C-Zufuhr nur etwa 20 mg beträgt. Somit genügen bereits knapp 20 mg täglich, um Skorbut zu vermeiden. Die Fachinformation des Bundesinstituts für Arzneimittel und Medizinprodukte (BfArM) gibt für Vitamin C einen täglichen Gesamtumsatz von etwa 1 mg/kg Körpergewicht an.[2]

Für Vergleichszwecke interessant ist, dass für Meerschweinchen eine Tagesdosis von 10 bis 30 mg empfohlen wird (bei einem Gewicht von etwa 0,8 bis 1,5 kg), wobei sie diese wie Menschen nicht selbst über die Leber produzieren können. Im Gegensatz dazu produzieren viele Tiere selbst Vitamin C. Große Hunde oder kleine Kälber, die etwa das Körpergewicht eines Menschen haben, stellen 1 bis 2 g täglich her, bei Krankheit bis zu 10 g.

Studien zur Pharmakokinetik von Vitamin C zeigen, dass eine volle Sättigung der Körperreserven mit Vitamin C (3000 mg) eine tägliche Zufuhr von 200 mg erfordert. Immunzellen wie Lymphozyten, Neutrophile und Monozyten werden bereits bei einer täglichen Aufnahme von 100 mg Vitamin C gesättigt. Die vollständige Plasmasättigung wird bei Zufuhr von 1000 mg Vitamin C pro Tag erreicht. Die Bioverfügbarkeit nimmt bei oraler Einnahme mit steigender Einzeldosis stark ab. 200 mg werden noch nahezu vollständig aufgenommen.[25] Aus diesem Grund ist es sinnvoller, mehrere Einzeldosen mit je 200 mg über den Tag verteilt zu sich zu nehmen, als einmalig 1000 mg.

Vitamin-C-Blutplasmaspiegel

Die Vitamin-C-Versorgung des Organismus spiegelt sich im Blutspiegel wider. Laut DGE sind geringere Konzentrationen als 20 µmol/l (0,35 mg/dl) mit vorklinischen Symptomen wie beispielsweise allgemeiner Müdigkeit, Leistungsschwäche, Infektanfälligkeit und schlechter Wundheilung verbunden. Offensichtliche klinische Mangelsymptome, die unter dem Begriff Skorbut zusammengefasst werden, treten erst bei Vitamin-C-Plasmaspiegeln unterhalb von 10 µmol/l (0,18 mg/dl) auf. Heute ist allgemein anerkannt, dass subklinische Vitamin-C-Defizite die Langzeitgesundheit negativ beeinflussen. Ein deutsches Konsensuspapier empfiehlt deshalb präventive Vitamin-C-Plasmaspiegel von mindestens 50 µmol/l (0,9 mg/dl) zur Verringerung des Arteriosklerose- und Krebsrisikos (DGE 2000). Die von der DGE empfohlene Vitamin-C-Tagesdosis von 100 mg bezieht sich ausschließlich auf Gesunde. Vitamin C ist eines der wichtigsten körpereigenen Antioxidantien. Ein Mehrbedarf bei Erkrankungen, die mit der Generierung von reaktiven Sauerstoffverbindungen (ROS) einhergehen, ist unbestritten. Er ist beim gegenwärtigen Stand der Erkenntnis nur noch nicht genau bezifferbar. Chronisch entzündliche Erkrankungen wie beispielsweise Arthritis, Allergien, Arteriosklerose, Krebs oder rezidivierende Infektionen sind nachweislich mit einem subklinischen bis klinischen Vitamin-C-Mangel (unter 30 µmol/l oder 0,54 mg/dl) und oxidativem Stress verbunden.[26][27][28][29] Eine ständig zunehmende Anzahl epidemiologischer Studien zeigt den prophylaktischen Wert einer adäquaten dietätischen Vitamin-C-Aufnahme. Hier sind vor allem die Ergebnisse der EPIC-Studie zu nennen, die 2001 in der Zeitschrift „The Lancet“ publiziert wurden. Die Daten von fast 20.000 Männern und Frauen zeigten, dass eine Steigerung der Blutascorbatwerte um 20 μM (0,35 mg/dl) eine 20%ige Reduktion der Mortalität mit sich brachte.[30] [2]

Mangelerscheinungen

Szent-Györgyi identifizierte 1933 das Vitamin C als wirksame Substanz gegen Skorbut. [2]

Nur wenige Wirbeltiere, darunter Trockennasenaffen (unter anderem der Mensch), Meerschweinchen und Echte Knochenfische, sowie einige Familien in den Ordnungen der Fledertiere und Sperlingsvögel, sind nicht zur Biosynthese von Ascorbinsäure aus Glucuronsäure befähigt. Ihnen fehlt das Enzym L-Gulonolactonoxidase.[31] Für diese Lebewesen ist Ascorbinsäure ein Vitamin, also essenziell. Für alle anderen Wirbeltiere ist Ascorbinsäure nur ein Metabolit. Lebewesen, die nicht in der Lage sind, Ascorbinsäure selbst zu synthetisieren, müssen diese in ausreichender Menge über die Nahrung aufnehmen, um nicht an Skorbut zu erkranken. In frisch gelegten Hühnereiern fehlt zwar die Ascorbinsäure, sie wird jedoch ab Brutbeginn hauptsächlich von der Membran des Dottersacks synthetisiert.[32]

Studien, die den tatsächlichen Vitamin-C-Gehalt im Blut des Menschen bestimmen, beobachten häufiger als bislang angenommen eine Unterversorgung: Die NHANES-III-Untersuchung von 1988 bis 1994 stellte fest, dass 10 bis 14 % der untersuchten Amerikaner an einer ernsten Unterversorgung (unter 11 µmol/l) und 17–20 % an einer subklinischen (11–28 µmol/l) Unterversorgung leiden – insgesamt also mehr als ein Viertel der Bevölkerung.[33] Die aktuelle NHANES-Erhebung für den Zeitraum 2003–2004 beobachtet eine erfreuliche Entwicklung: Eine ernste Unterversorgung betrifft nur noch 7,1 % der Bevölkerung. Einschneidend sind immer noch die Einkommensverhältnisse. Menschen mit niedrigem Einkommen leiden im Vergleich zu Gutverdienern doppelt so häufig an einer Unterversorgung (10–17 % versus 5–8 %). Zwei wesentliche Gründe für die insgesamt verbesserte Vitamin-C-Versorgung sind weniger Passivraucher, durch ein Rauchverbot in öffentlichen Einrichtungen und die zunehmende Einnahme von Vitaminpräparaten. Am subklinischen Mangel (unter 28 µmol/l) änderte sich kaum etwas – er trifft immer noch etwa 20 % der Amerikaner.[34] Der sozioökonomische Einfluss auf eine gesundheitsbewusste Ernährung wird in einer schottischen Untersuchung deutlich: 44 % der Menschen mit niedrigem sozioökonomischen Status wiesen Vitamin-C-Blutspiegel unter 23 µmol/l und 20 % unter 11 µmol/l auf.[29] [2] Aber Nichtrauchen und gute Schulbildung schützen nicht automatisch vor einer Unterversorgung. Eine kanadische Studie bestimmte in der Zeit von 2004 bis 2008 die Vitamin-C-Blutspiegel von knapp 1000 Nichtrauchern im Alter von 20 bis 29 Jahren an einer Campus-Universität. Jeder Dritte zeigte einen subklinischen Vitamin-C-Mangel (unter 28 µmol/l) und jeder Siebte defizitäre Werte unterhalb der Skorbutgrenze (unter 11 µmol/l). Dabei korrelierte der Mangel mit Übergewicht, Bluthochdruck und Entzündungsparametern.[35] [2]

Überdosierung

Für Vitamin C ist die Hypervitaminose, wie sie beispielsweise bei Vitamin A vorkommen kann, sehr selten, da der Körper einen Überschuss an Ascorbinsäure wieder über die Nieren ausscheidet.[2]

In einer vom National Institutes of Health (NIH) durchgeführten Studie wurden sieben Freiwillige zunächst mit einer ascorbinsäurearmen Diät ernährt und so ihre körpereigenen Vorräte an Vitamin C aufgebraucht. Als diese danach wieder mit Vitamin C versorgt wurden, begann die renale (über die Niere) Ausscheidung an unverändertem Vitamin C ab etwa 100 mg/d. Die Zufuhr über 400 mg/d wurde – soweit überhaupt im Darm aufgenommen (die Einnahme von Megadosen senkt die Resorptionsquote deutlich) – praktisch vollständig renal ausgeschieden. Ab etwa 1 g pro Tag steigen die Oxalat- und sekundär die Harnsäure-Konzentrationen im Blutplasma.[36] Da ein Teil der Ascorbinsäure im Stoffwechsel zu Oxalsäure umgesetzt wird, besteht bei entsprechend disponierten Menschen prinzipiell ein erhöhtes Risiko für Calciumoxalat-Nierensteine (CaC2O4). Schon bei normaler Zufuhr stammen etwa 30 bis 50 % des Plasmaoxalats aus dem Vitamin-C-Abbau. Der Oxalatspiegel im Urin steigt selbst erst an, wenn eine Tagesdosis von etwa 6 g überschritten wird.[37]

Hohe orale Einzeldosen können einen vorwiegend osmotisch bedingten Durchfall auslösen. Die Dosis variiert von Person zu Person, wird mit etwa 5–15 g (1–3 gehäufte Teelöffel) für eine gesunde Person angegeben.[38] Zu erwähnen ist, dass diese Toleranzgrenze bei Individuen, die an schweren Erkrankungen leiden, bis auf über 200 g ansteigen kann.[2]

Bei Menschen mit Glucose-6-Phosphatdehydrogenase-Mangel (G6PD-Mangel, Favismus), einer insbesondere in Afrika sehr weit verbreiteten, erblichen Krankheit, können intravenöse Vitamin-C-Dosen, etwa 30 bis 100 g pro Infusion, zur Hämolyse führen.[39]

Häufig wird Vitamin C, besonders wenn auf nüchternen Magen konsumiert, mit Indigestion durch Übersäuerung des Magens in Verbindung gebracht. Dies kann unter anderem vermieden werden, indem Vitamin C nicht als Ascorbinsäure, sondern als Ascorbat (Salz der Ascorbinsäure, zum Beispiel Natriumascorbat) aufgenommen wird. Dies kann zum Beispiel durch die Zugabe von Backpulver (NaHCO3) erreicht werden. Studien haben gezeigt, dass die Resorption von Vitamin C erhöht wird, wenn es zu Fruchtsäften wie zum Beispiel Orangensaft gemischt wird.

Bei der Ratte liegt der LD50-Wert (die Dosis, bei der die Hälfte der Versuchstiere sterben) für Vitamin C bei 11,9 g pro Kilogramm Körpergewicht.[40] Das entspricht bei einem 70 kg schweren Menschen einer Dosis von 833 g.

Therapeutisch und prophylaktisch eingesetzt wird die Überdosierung von Vitamin C zum Beispiel bei Harnwegsinfektionen. Durch die renale Ausscheidung der Ascorbinsäure wird der Urin sauer. In diesem sauren Milieu können die Erreger deutlich schlechter gedeihen.[41] Eine regelmäßige Einnahme von Vitamin C erhöht jedoch die Bildung von Nierensteinen, zumindest ist das Risiko bei den untersuchten Männern doppelt so hoch.[42] [2]

Weitere Informationen

Literatur

  • Beat Bächi: Volksdroge Vitamin C für alle! Pharmazeutische Produktion, Vermarktung und Gesundheitspolitik (1933–1953). Chronos, Zürich 2009, ISBN 978-3-0340-0921-8 (= Interferenzen. Band 14, zugleich Dissertation an der Universität Zürich 2008).[43]
  • Lester Packer, Jürgen Fuchs: Vitamin C in Health and Disease. Marcel Dekker Inc illustrated edition 1997, ISBN 0-8247-9313-7.
  • Hans K. Biesalski, Josef Köhrle, Klaus Schümann: Vitamine, Spurenelemente und Mineralstoffe. Prävention und Therapie mit Mikronährstoffen. Thieme, Stuttgart 2002, ISBN 3-13-129371-3.
  • Linus Pauling: Linus Paulings Vitamin-Programm. Plädoyer für ein gesundes Leben. Bertelsmann, 1990, ISBN 3-570-02671-X.
  • Linus Pauling: Vitamin C und der Schnupfen. Übersetzt von Friedrich G. Helfferich. Verlag Chemie, Weinheim 1972, ISBN 3-527-25458-7.
  •  K. Akhilender Naidu: Vitamin C in human health and disease is still a mystery ? An overview. In: Nutrition Journal. 2, Nr. 1, 2003, S. 7, DOI:10.1186/1475-2891-2-7, PMID 14498993.


Weblinks

Siehe auch

Einzelnachweise

  1. P. Weber: Vitamin C.; Vitamine, Spurenelemente und Mineralstoffe. 2002, S. 57–69.
  2. 2,00 2,01 2,02 2,03 2,04 2,05 2,06 2,07 2,08 2,09 2,10 2,11 2,12 2,13 2,14 2,15 2,16 2,17 2,18 2,19 2,20 2,21 Wikipedia: Ascorbinsäure, abgerufen am 3.1.2016
  3. 3,0 3,1 3,2 3,3 3,4 3,5 3,6 Gerhard G. Habermehl, Peter E. Hammann, Hans C. Krebs, W. Ternes: Naturstoffchemie: Eine Einführung. Springer Verlag Berlin, 3. vollst. überarb. u. erw. Auflage 2008, ISBN 978-3-540-73732-2, S. 666.
  4. Wilhelm Friedrich: Vitamins. Gruyter 1988. ISBN 978-3-11-010244-4; S. 949.
  5. Eigenschaften der Apfelbeere. In: Apfelbeere.org. Abgerufen am 22. Dezember 2014 (Tabellen mit Vitamin- und Anthocyangehalt der Apfelbeere).
  6. Das Vorkommen von Vitamin C. In: chemieunterricht.de. Abgerufen am 22. Dezember 2014.
  7. W. Bors und G. R. Buettner: The vitamin C radical and its reactions. In: Lester Packer, Jürgen Fuchs: Vitamin C in Health and Disease. Marcel Dekker Inc illustrated edition 1997, ISBN 0-8247-9313-7, S. 76.
  8. K. C. Sagun u. a.: Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury. In: FASEB Journal. 2005, 19 (12), S. 1657–1667, PMID 16195374 (PDF, freier Volltextzugriff).
  9. J. Huang u. a.: Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. In: PNAS. 2001, 98, Nr. 20, S. 11720–11724, PMID 11573006 (PDF, freier Volltextzugriff).
  10. C. S. Tsao: An overview of ascorbic acid chemistry and biochemistry. In: Lester Packer, Jürgen Fuchs: Vitamin C in Health and Disease. Marcel Dekker Inc illustrated edition 1997, ISBN 0-8247-9313-7, S. 25–58.
  11. Y. Nishikawa und T. Kurata: Interconversion between dehydro-L-ascorbic acid and L-ascorbic acid. In: Bioscience, Biotechnology, and Biochemistry. 2000, 64 Nr. 3, S. 476–483, PMID 10803943, DOI:10.1271/bbb.64.476, PDF (Memento vom 19. Dezember 2014 im Internet Archive), freier Volltextzugriff (engl.)
  12. Y. Nishikawa u. a: Identification of 3,4-dihydroxy-2-oxo-butanal (L-threosone) as an intermediate compound in oxidative degradation of dehydro-L-ascorbic acid and 2,3-diketo-L-gulonic acid in a deuterium oxide phosphate buffer. In: Bioscience, Biotechnology, and Biochemistry. 2001, 65, Nr. 8, S. 1707–1712, PMID 11577707, DOI:10.1271/bbb.65.1707, PDF (Memento vom 19. Dezember 2014 im Internet Archive), freier Volltextzugriff.
  13. 13,0 13,1 13,2 Shailja Chambial, Shailendra Dwivedi, Kamla Kant Shukla, Placheril J. John, and Praveen Sharma. Vitamin C in Disease Prevention and Cure: An Overview. Indian Journal of Clinical Biochemistry. Oktober 2013; 28(4): S. 314–328 (DOI:10.1007/s12291-013-0375-3; PMID 24426232).
  14. 14,0 14,1 H.-K. Biesalki u. a. Ernährungsmedizin – Nach dem Curriculum der Bundesärztekammer. 3. Auflage 2005. Georg Thieme Verlag, ISBN 978-3-13-100294-5, S. 143–147.
  15. J. D. Campbell, M. Cole, B. Bunditrutavorn, A. T. Vell: Ascorbic acid is a potent inhibitor of various forms of T cell apoptosis. In: Cell Immunol. 1999; 194; S. 1–5 (PMID 10357874).
  16. E. S. Wintergerst, S. Maggini, D. H. Hornig: Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. In: Annals of Nutrition and Metabolism. 2006; 50(2), S. 85–94 (PMID 16373990).
  17. W. R. Thomas, P. G. Holt: Vitamin C and immunity: an assessment of the evidence. In: Clinical and Experimental Immunology. (1978) 32, S. 370–379 (PMC 1541262).
  18. B. Leibovitz, B. V. Siegel: Ascorbic acid, neutrophil function, and the immune response. In: International Journal for Vitamin and Nutrition Research. 1978; 48(2), S. 159–164 (PMID 357320).
  19. P. C. Elwood, H. P. Lee, A. S. St. Leger, M. Baird, A. N. Howard: A randomized controlled trial of vitamin C in the prevention and amelioration of the common cold. In: British Journal of Preventive and Social Medicine. 1976; 30(3), S. 193–196 (PMC 478963).
  20. H. Hemilä, E. Chalker: Vitamin C for preventing and treating the common cold. In: Cochrane Database of Systematic Reviews. 2013; 1:CD000980. DOI:10.1002/14651858.CD000980.
  21. R. M. Douglas, E. B. Chalker, B. Treacy: Vitamin C for preventing and treating the common cold. In: Cochrane Database of Systematic Reviews. 2000; 2:CD000980.
  22. Deutsche Gesellschaft für Ernährung, abgerufen am 25. November 2015
  23. J. C. Boffi, C. Wedemeyer, M. Lipovsek, E. Katz, D. J. Calvo, A. B. Elgoyhen: Positive modulation of the α9α10 nicotinic cholinergic receptor by ascorbic acid.. In: British Journal of Pharmacology. 168, Nr. 4, 2013, S. 954–965. DOI:10.1111/j.1476-5381.2012.02221.x. PMID 22994414.
  24. DGE: Die Referenzwerte für die Nährstoffzufuhr: Vitamin C, gültig für den Bereich D-A-CH, Stand 2008.
  25. M. Levine, C. Conry-Cantilena, Y. Wang, R. W. Welch, P. W. Washko u. a.: Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. In: Proceedings of the National Academy of Sciences. 1996, 93, S. 3704–3709 (PMID 8623000; PMC 39676).
  26. J. Lunec, D. R. Blake: The determination of dehydroascorbic acid and ascorbic acid in the serum and synovial fluid of patients with rheumatoid arthritis (RA). In: Free Radical Research Communications. 1985;1(1), S. 31–39; PMID 3880014.
  27. Kumar Shanmugasundaram u. a., 2001.
  28. C. L. Long, K. I. Maull, R. S. Krishnan, H. L. Laws, J. W. Geiger, L. Borghesi, W. Franks, T. C. Lawson, H. E. Sauberlich: Ascorbic acid dynamics in the seriously ill and injured. In: Journal of Surgical Research. Februar 2003, 109 (2), S. 144-148. PMID 12643856.
  29. 29,0 29,1 H. R. Frikke-Schmidt, J. Lykkesfeldt: Role of marginal vitamin C deficiency in atherogenesis: In vivo models and clinical studies. In: Basic & Clinical Pharmacology & Toxicology. 2009; 104 (6); S. 419-433; DOI:10.1111/j.1742-7843.2009.00420.x.
  30. K. T. Khaw, S. Bingham, A. Welch, R. Luben, N. Wareham, S. Oakes, N. Day: Relation between plasma ascorbic acid and mortality in men and women in EPIC-Norfolk prospective study: a prospective population study. European Prospective Investigation into Cancer and Nutrition. In: The Lancet. März 2001; 357(9257), S. 657-663; PMID 11247548.
  31. G. Drouin, J. R. Godin, B. Pagé: The genetics of vitamin C loss in vertebrates. In: Current genomics. Band 12, Nummer 5, August 2011, S. 371–378, DOI:10.2174/138920211796429736, PMID 22294879, PMC 3145266.
  32. S. Englard, S. Seifter: The Biochemical Functions of Ascorbic Acid. In: Annual Review of Nutrition. 6, 1986, S. 365–406, DOI:10.1146/annurev.nu.06.070186.002053.
  33. Jeffrey S. Hampl, Christopher A. Taylor, and Carol S. Johnston: Vitamin C Deficiency and Depletion in the United States: The Third National Health and Nutrition Examination Survey, 1988 to 1994. In: American Journal of Public Health. Mai 2004, Vol. 94, No. 5, S. 870–875, DOI:10.2105/AJPH.94.5.870, PMID 15117714, PMC 1448351.
  34. R. L. Schleicher, M. D. Carroll, E. S. Ford, D. A. Lacher: Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003-2004 National Health and Nutrition Examination Survey (NHANES). In: The American Journal of Clinical Nutrition. November 2009; 90 (5), S. 1252–1263, DOI:10.3945/ajcn.2008.27016.
  35. Leah Cahill, Paul N. Corey, Ahmed El-Sohemy: Vitamin C Deficiency in a Population of Young Canadian Adults. In: American Journal of Epidemiology. 2009, 170 (4), S. 464–471, DOI:10.1093/aje/kwp156.
  36.  M. Levine u. a.: Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. In: Proceedings of the National Academy of Sciences. 93, Nr. 8, 1996, S. 3704–3709, PMID 8623000.
  37. M. Zimmermann, C. Erbacher-von Grumbkow (Übers.): Burgersteins Mikronährstoffe in der Medizin: Prävention und Therapie. Ein Kompendium. 3. Auflage, Georg Thieme Verlag, 2003, ISBN 978-3-8304-7162-2, S. 237.
  38. Vitamin C, Titrating To Bowel Tolerance, Anascorbemia, and Acute Induced Scurvy (Memento vom 28. April 2013 im Internet Archive)
  39. Intravenous Ascorbate as a Chemotherapeutic and Biologic Response Modifying Agent (Memento vom 9. Januar 2010 im Internet Archive) In: The Center for the Improvement of Human Functioning International.
  40. Eintrag zu Ascorbinsäure in der GESTIS-Stoffdatenbank des IFA, abgerufen am 8. Dezember 2012 (JavaScript erforderlich).
  41. Harnwegsinfektion und Blasenentzündung (Zystitis). Heribert Schorn, 11. Juli 2008, abgerufen am 23. Dezember 2014 (deutsch).
  42.  L. K. Thomas, C. Elinder, H. Tiselius, A. Wolk, A. Åkesson: Ascorbic acid supplements and kidney stone incidence among men: A prospective study. In: JAMA Internal Medicine. 173, Nr. 5, 2013, S. 386–388, DOI:10.1001/jamainternmed.2013.2296.
  43. Rezension von Igor Polianski. in: H-Soz-Kult. 10. Juni 2010.